On the Erdos-Szekeres convex polygon problem
نویسنده
چکیده
Let ES(n) be the smallest integer such that any set of ES(n) points in the plane in general position contains n points in convex position. In their seminal 1935 paper, Erdős and Szekeres showed that ES(n) ≤ ( 2n−4 n−2 ) + 1 = 4. In 1960, they showed that ES(n) ≥ 2 + 1 and conjectured this to be optimal. In this paper, we nearly settle the Erdős-Szekeres conjecture by showing that ES(n) = 2.
منابع مشابه
On the Erdos-Szekeres n-interior point problem
The n-interior point variant of the Erdős-Szekeres problem is the following: for any n, n ≥ 1, does there exist a g(n) such that every point set in the plane with at least g(n) interior points has a convex polygon containing exactly n-interior points. The existence of g(n) has been proved only for n ≤ 3. In this paper, we show that, for point sets having at most logarithmic number of convex lay...
متن کاملTwo player game variant of the Erdos-Szekeres problem
The classical Erdős-Szekeres theorem states that a convex k-gon exists in every sufficiently large point set. This problem has been well studied and finding tight asymptotic bounds is considered a challenging open problem. Several variants of the Erdős-Szekeres problem have been posed and studied in the last two decades. The well studied variants include the empty convex k-gon problem, convex k...
متن کاملErdos-Szekeres theorem with forbidden order types
According to the classical Erdős–Szekeres theorem, every sufficiently large set of points in general position in the plane contains a large subset in convex position. Parallel to the Erdős–Hajnal problem in graph-Ramsey theory, we investigate how large such subsets must a configuration contain if it does not have any sub-configuration belonging to a fixed order type. © 2005 Elsevier Inc. All ri...
متن کاملCombinatorial Problems in Geometry and Number Theory
In a previous paper (given at the International Congress of Mathematicians at Nice 1970) entitled "On the application of combinatorial analysis to number theory geometry and analysis", I discussed many combinatorial results and their applications . I will refer to this paper as I (as much as possible I will try to avoid overlap with this paper) . First I discuss those problems mentioned in I wh...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1604.08657 شماره
صفحات -
تاریخ انتشار 2016